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13 X=CH(COCH,)COOCH, 

15 X=Br 

boxaldehyde led to the cyclopropylcarbinol 14, which was 
converted13 into homoallylic bromide 15. Alkylation of methyl 
acetoacetate with 15 gave 13, which, on treatment with 
SnCl4/CH2Cl2 at room temperature was transformed into the 
methyl ester of the racemic form of/3,7-unsaturated acid U,14 

an intermediate in the lactone 2 synthesis described above. As 
far as we are aware, this polyene cyclization represents the first 
case in which a /?-keto ester unit acts as the initiator.15-16 
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Organic Photochemistry with 6.7-eV Photons: 
Ascaridole1 

Sir: 

The ultraviolet absorption spectrum of ascaridole (I)2 has 
not only a long, low-intensity absorption extending to 360 nm 

as in other peroxides,3 but also a maximum at 233 nm (e 166). 
It has been conjectured2 that this "presumably implies inter­
action of the oxygen lone pairs with the double bond, perhaps 
in the antibonding orbital". The irradiation of this compound 
at 185 nm was of interest since such photon energy (6.7 eV) 
would correspond to the 7r —*• ir* absorption of the olefinic 
group. Studies on photochemistry of bichromophoric systems 
in the far-ultraviolet are few. Such studies would serve to an­
swer the question if intramolecular coupling between chro-
mophores in the excited states can be observed in the lifetimes 
of the excited states which tend to be quite short in the far-
ultraviolet region. 

In an earlier study of the photochemistry of ascaridole with 
light of wavelength >300 nm,2 it was found that the only 
product was isoascaridole (2) which was formed in high yield. 
The reaction 1 —* 2 was slow on direct irradiation, but was 
speeded up significantly when triplet sensitizers were used. The 
primary reaction (eq 1) was suggested2 to involve cleavage to 

hv (D 

the diradical 6, a process that would be consistent with the 
photochemistry of peroxides at long wavelengths.3 

Photolysis of ascaridole of 185 nm in hydrocarbon solution4 

gave isoascaridole (2), a-terpinene (3), the triene 5, a trace of 
p-cymene (4), and oxidation products derived from the solvent 
which were cyclohexyl hydroperoxide, cyclohexanol, and cy-
clohexanone when the solvent was cyclohexane. At low con-
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versions (< 15%), the mass balance as shown by the following 
equalities was satisfactory to ±5%: 

a-terpinene + triene 5 = 
cyclohexyl hydroperoxide5 + cyclohexanol + cyclohexanone 

A ascaridole = isoascaridole + a-terpinene + triene 5 

Evidently, at 185 nm, the photolysis of ascaridole leads not only 
to isoascaridole as at longer wavelengths2 but also to a retro-
Diels-Alder reaction as shown in eq 2. 

LxOj — i ^ r J + [O2] (2) 

The triene 5 is believed to be predominantly a secondary 
isomerization product derived from a-terpinene by the well-
known photochemical transformation of 1,3-cyclohexadienes. 
This was confirmed in a separate experiment in which a solu­
tion of a-terpinene alone was irradiated at 254 nm when 5 was 
observed to be formed. The ratio of process 2 to process 1 at 
185 nm was 1:2. 

The intriguing aspect of reaction 2 is that (according to gas 
chromography) not a trace of the oxygen that should be re­
leased was observed to accumulate in the solution. Further, the 
oxidation products of the solvents that are reported above 
closely resemble those from the direct irradiation at 185 nm 
of oxygen dissolved in the same solvents.6 In view of the 40-fold 
weaker absorption of oxygen at 185 nm compared with the 
absorption of ascaridole at the same wavelength, the possibility 
that the oxygen released in reaction 2 undergoes secondary 
photolysis can be discounted. The conclusion that is inevitable 
is that the retro-Diels-Alder reaction (2) gives oxygen in an 
electronically excited state which invariably reacts with the 
solvent. The parallel between the product compositions in this 
and the 02-hydrocarbon system suggests that this state may 
be 0 2 ( 32 u

_ ) but a closer examination indicates another pos­
sibility as well. 

Recently, Turro, Chow, and Rigaudy7 found that the py-
rolysis of certain 1,4-anthracene endoperoxides gave in nearly 
quantitative yield the aromatic hydrocarbon and oxygen (1A). 
The process 

A 

anthracene endoperoxide -> anthracene + 02( A) (3) 

would evidently conserve spin, whereas the process 
A 

anthracene endoperoxide ->• anthracene + Ch(3Sg ) (4) 
would not. The conservation of spin may or may not be a strong 
consideration since reaction 4 competed successfully against 
3 in 9,10-anthracene endoperoxides but not in 1,4-anthracene 
endoperoxides. 

In applying these considerations to ascaridole, it can be seen 
that 

ascaridole • a-terpinene (ground singlet) + 02(32u~) 

(5) 
is energetically possible8 but does not conserve spin while 

ascaridole *• a-terpinene (triplet) + 02(32u
+) (6) 

would conserve spin and energy. The 3 2 u
+ state of oxygen is 

35 713 cm-1 (102.1 kcal/mol) above the ground state so that 
~53 kcal/mol will be available to excite the a-terpinene to its 
triplet state. It is at present not possible to choose between these 

alternatives because (i) the similarity in the composition of the 
oxidation products from the solvent in the ascaridole-cyclo-
hexane system to the C>2-cyclohexane system may mean that 
either reaction 5 is the preferred made of photodecomposition 
of ascaridole or, in the 02-cyclohexane system, the active 
species is not 02(32u~) but 0 2 ( 32 u

+ ) ; (ii) the fate of the 
a-terpinene (other than deactivation) should give information 
on whether it is formed in its ground state or its triplet state. 
Unfortunately, the host of products that are formed in the 
photolysis of ascaridole makes this task difficult. 

We are currently undertaking the flash photolysis of as­
caridole in the vapor phase and expect to determine unequiv­
ocally the character of the oxygen as it is formed in reaction 
2. 

Photolysis of ascaridole offers a second route to the pro­
duction of an upper excited state of oxygen in the condensed 
phase. 
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Crystal Structure and Dynamic 
Behavior of Ir4(CO)io(diars). A New Pathway for 
Carbonyl Scrambling in M4(CO)i2 Derivatives 

Sir: 

The solid-state structures established for Rh4(CO)12 (CV)1 

and Ir4(CO)U (Jd)2 formed a natural basis for the mechanism 
(C3,- ** Td) proposed by Cotton et al. for the carbonyl 
scrambling in Rh4(CO)12.3 Specific evidence for intercon-
version of Td- and C3i;-like forms recently has been reported 
for the derivatives Ir4(CO)1 ,(PPh2Me) (C3,)4 and Ir4-
(CO)n[CN(?-Bu)] (Td).5 Nevertheless, 13C NMR data re­
ported for C3y-like RhCo3(CO)12 provide evidence for a lowest 
energy scrambling process that is incompatible with C3,- ** Td 
interconversions.6 Rationales for this apparent anomaly have 
been advanced in two recent discussions of carbonyl scrambling 
in M4(CO)12 derivatives.7,8 We report herein a second 
anomalous case in the compound Ir4(CO)!0(diars) (diars = 
l,2-bis(dimethylarsino)benzene), which displays dynamic 
behavior that in part requires a new mechanistic proposal. 
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